domingo, 27 de junio de 2010

Tecnología LED/OLED blog 2.5

En corriente continua (CC), todos los diodos emiten cierta cantidad de radiación cuando los pares electrón-hueco se recombinan; es decir, cuando los electrones caen desde la banda de conducción (de mayor energía) a la banda de valencia (de menor energía), emitiendo fotones en el proceso. Indudablemente, por ende, su color, dependerá de la altura de la banda prohibida (diferencias de energía entre las bandas de conducción y valencia), es decir, de los materiales empleados. Los diodos convencionales, de silicio o germanio, emiten radiación infrarroja muy alejada del espectro visible. Sin embargo, con materiales especiales pueden conseguirse longitudes de onda visibles. Los LED e IRED, además tienen geometrías especiales para evitar que la radiación emitida sea reabsorbida por el material circundante del propio diodo, lo que sucede en los convencionales.

Compuestos empleados en la construcción de LED.


Los primeros diodos construidos fueron los diodos infrarrojos y de color rojo, permitiendo el desarrollo tecnológico posterior la construcción de diodos para longitudes de onda cada vez menores. En particular, los diodos azules fueron desarrollados a finales de los 90 por Shuji Nakamura, añadiéndose a los rojos y verdes desarrollados con anterioridad, lo que permitió —por combinación de los mismos— la obtención de luz blanca. El diodo de seleniuro de zinc puede emitir también luz blanca si se mezcla la luz azul que emite con la roja y verde creada por fotoluminiscencia. La más reciente innovación en el ámbito de la tecnología LED son los diodos ultravioleta, que se han empleado con éxito en la producción de luz blanca para iluminar materiales fluorescentes.

Tanto los diodos azules como los ultravioletas son caros respecto de los más comunes (rojo, verde, amarillo e infrarrojo), siendo por ello menos empleados en las aplicaciones comerciales.

Los LEDs comerciales típicos están diseñados para potencias del orden de los 30 a 60 mW. En torno a 1999 se introdujeron en el mercado diodos capaces de trabajar con potencias de 1 vatio para uso continuo; estos diodos tienen matrices semiconductoras de dimensiones mucho mayores para poder soportar tales potencias e incorporan aletas metálicas para disipar el calor (véase convección) generado por efecto Joule.

Hoy en día, se están desarrollando y empezando a comercializar LEDs con prestaciones muy superiores a las de hace unos años y con un futuro prometedor en diversos campos, incluso en aplicaciones generales de iluminación. Como ejemplo, se puede destacar que Nichia Corporation ha desarrollado LEDs de luz blanca con una eficiencia luminosa de 150 lm/W, utilizando para ello una corriente de polarización directa de 20 miliamperios (mA). Esta eficiencia, comparada con otras fuentes de luz en términos de rendimiento sólo, es aproximadamente 1,7 veces superior a la de la lámpara fluorescente con prestaciones de color altas (90 lm/W) y aproximadamente 11,5 veces la de una lámpara incandescente (13 lm/W). Su eficiencia es incluso más alta que la de la lámpara de vapor de sodio de alta presión (132 lm/W), que está considerada como una de las fuentes de luz más eficientes.[1]

El comienzo del siglo XXI ha visto aparecer los diodos OLED (LED orgánicos), fabricados con materiales polímeros orgánicos semiconductores. Aunque la eficiencia lograda con estos dispositivos está lejos de la de los diodos inorgánicos, su fabricación promete ser considerablemente más barata que la de aquellos, siendo además posible depositar gran cantidad de diodos sobre cualquier superficie empleando técnicas de pintado para crear pantallas en color.

OLED (Organic Light-Emitting Diode o diodo orgánico de emisión de luz) es un diodo basado en una capa electroluminiscente que está formada por una película de componentes orgánicos, y que reaccionan a una determinada estimulación eléctrica, generando y emitiendo luz por sí mismos.

No se puede hablar realmente de una tecnología OLED, sino más bien de tecnologías basadas en OLED, ya que son varias las que hay, dependiendo del soporte y finalidad a la que vayan destinados.

Su aplicación es realmente amplia, mucho más que, en el caso que nos ocupa (su aplicación en el mundo de la informática), cualquier otra tecnología existente.

Pero además, las tecnologías basadas en OLED no solo tienen una aplicación puramente como pantallas reproductoras de imagen, sino que su horizonte se amplía al campo de la iluminación, privacidad y otros múltiples usos que se le pueda dar.

Las ventajas de esta nueva tecnología son enormes, pero también tiene una serie de inconvenientes, aunque la mayoría de estos son totalmente circunstanciales, y desaparecerán en unos casos conforme se siga investigando en este campo y en otros conforme vaya aumentando su uso y producción.

Una solución tecnológica que pretende aprovechar las ventajas de la eficiencia alta de los LEDs típicos (hechos con materiales inorgánicos principalmente) y los costes menores de los OLEDs (derivados del uso de materiales orgánicos) son los Sistemas de Iluminación Híbridos (Orgánicos/Inorgánicos) basados en diodos emisores de luz. Dos ejemplos de este tipo de solución tecnológica los está intentado comercializar la empresa Cyberlux con los nombres de Hybrid White Light (HWL) (Luz Blanca Híbrida) y Hybrid Multi-color Light (HML) (Luz Multicolor Híbrida), cuyo resultado, puede producir sistemas de iluminación mucho más eficientes y con un coste menor que los actuales.

CESAR ISCALA
CI 19236762
EES SECCION 1

No hay comentarios:

Publicar un comentario