lunes, 15 de febrero de 2010

BLOGS

fabricacion diodos union pn

Las características de las uniones PN tienen su principal aplicación en la fabricación de diodos, que son dispositivos con una unión PN cuya principal función es la de conducir un flujo de corriente cuando la polarización es directa y bloquearla cuando está en inversa.
Tambien se puede aprovechar la tensión de avalancha (tensión máxima de polarización inversa) para fabricar diodos especiales denominados zener, cuya característica es que la tensión de polarización inversa permanece constante al variar la intensidad del cátodo al ánodo en un determinado valor de fabricación, esta peculiaridad es útil para construir estabilizadores de tensión.
Los transistores más populares son dos uniones en serie que pueden ser de tipo PNP o NPN. Su cua-lidad es que al fluir una corriente desde la unión central P a la unión tipo N (ejemplo de tipo NPN), fluye una intensidad mucho mayor desde la otra unión N hacia la N anterior de forma proporcional a la intensidad que insertemos. Con esta propiedad podemos construir amplificadores de tensión o de corriente.


Diodo, componente electrónico que permite el paso de la corriente en un solo sentido. Los diodos más empleados en los circuitos electrónicos actuales son los diodos fabricados con material semiconductor. El más sencillo, el diodo con punto de contacto de germanio, se creó en los primeros días de la radio. En los diodos de germanio (o de silicio) modernos, el cable y una minúscula placa de cristal van montados dentro de un pequeño tubo de vidrio y conectados a dos cables que se suel-dan a los extremos del tubo.
Los diodos de unión constan de una unión de dos tipos diferentes de material semiconduc-tor. El diodo Zener es un modelo especial de diodo de unión, que utiliza silicio, en el que la tensión en paralelo a la unión es independiente de la corriente que la atraviesa. Debido a esta característica, los diodos Zener se utilizan como reguladores de tensión. Por otra parte, en los diodos emisores de luz (LED, acrónimo inglés de Light-Emitting Diode), una tensión aplicada a la unión del semiconductor da como resultado la emisión de energía luminosa. Los LED se utilizan en paneles numéricos como los de los relojes digitales electrónicos y calculadoras de bolsillo.
Para resolver problemas referentes a los diodos se utilizan en la actualidad tres aproximacio-nes:
 La primera aproximación es la del diodo ideal, en la que se considera que el diodo no tiene caída de tensión cuando conduce en sentido positivo, por lo que esta primera aproximación consideraría que el diodo es un cortocircuito en sentido positivo. En cambio, el diodo ideal se comporta como un circuito abierto cuando su polarización es inversa.
 En la segunda aproximación, consideramos que el diodo tiene una caída de tensión cuando conduce en polarización directa. Esta caída de tensión se ha fijado en 0.7 V para el diodo de silicio, lo que hace que la segunda aproximación pueda representarse como un interruptor en serie con una fuente de 0.7 V.
 La tercera aproximación aproxima más la curva del diodo a la real, que es una curva, no una recta, y en ella colocaríamos una resistencia en serie con la fuente de 0.7 V.
V=0,7+I·R
Siendo, en la ecuación anterior, Rb la resistencia de la tercera aproximación (generalmente muy pequeña), y Id la corriente de polarización del diodo. La más utilizada es la segunda aproxima-ción.
Los diodos de unión p-n y los zener tienen características constructivas que los diferencian de otros. Su tamaño, en muchos casos, no supera el de una resistencia de capa o de película de 1/4W y aunque su cuerpo es cilíndrico, es de menor longitud y diámetro que las resistencias. Aunque existe gran variedad de tipos, sólo algunos especiales difieren de su aspecto. No ocurre lo mismo con el tamaño, pues es función de la potencia que pueden disipar. Es característico encontrarse un aillo en el cuerpo que nos indica el cátodo. Para aquellos cuyo tipo concreto viene señalado por una serie de letras y números, el cátodo es marcado mediante un anillo en el cuerpo, próximo a este terminal. Otros usan códigos de
colores, y en ellos el cátodo se corresponde con el terminal más próximo a la anda de color más gruesa. Existen fabricantes que marcan el cátodo con la letra "K" o el ánodo con la "a". Los diodos de punta de germanio suelen encapsularse en vidrio. En cuanto a los diodos LED, se encuentran encapsulados en resinas de distintos colores, según sea la longitud de onda con la que emita. El áno-do de estos diodos es más largo que el cátodo, y usualmente la cara del encapsulamiento próxima al cátodo es plana.
Una forma práctica de determinar el cátodo consiste en aplicar un polímetro en modo óhme-tro entre sus terminales. Si el terminal de prueba se aplica de ánodo a cátodo, aparecen lecturas del orden de 20-30Ω. Si se invierten los terminales, estas lecturas son del orden de 200-300 KΩ para el Ge, y de varios MΩ Para el Si. Si con el multitester utilizamos el modo de prueba de diodos, obtenemos el valor de la tensión de codo del dispositivo. Con ello consegui-mos identificar los dos terminales (ánodo y cátodo), y el material del que esta hecho (0.5-0.7 V para el de Si, 0.2-0.4 para el germanio y 1.2-1.5 para la mayoría de los LED.


http://www.taringa.net/posts/apuntes-y-monografias/2735690/Semiconductores-en-electronica-diodos.html

Jose Leonardo Moncada Torres
C.I 18878408
EES




No hay comentarios:

Publicar un comentario