Diodo Schottky y diodo Shockley
Diodo Schottky
El diodo Schottky o diodo de barrera Schottky, llamado así en honor del físico alemán Walter H. Schottky, es un dispositivo semiconductor que proporciona conmutaciones muy rápidas entre los estados de conducción directa e inversa (menos de 1ns en dispositivos pequeños de 5 mm de diámetro) y muy bajas tensiones umbral (también conocidas como tensiones de codo, aunque en inglés se refieren a ella como "knee", o sea, de rodilla). La tensión de codo es la diferencia de potencial mínima necesaria para que el diodo actúe como conductor en lugar de circuito abierto; esto, claro, dejando de lado la región Zener, que es cuando más bien existe una diferencia de potencial lo suficientemente negativa para que -a pesar de estar polarizado en contra del flujo de corriente- éste opere de igual forma como lo haría regularmente.
Funcionamiento
A frecuencias bajas un diodo normal puede conmutar fácilmente cuando la polarización cambia de directa a inversa, pero a medida que aumenta la frecuencia el tiempo de conmutación puede llegar a ser muy bajo, poniendo en peligro el dispositivo.
El diodo Schottky está constituido por una unión metal-semiconductor (barrera Schottky), en lugar de la unión convencional semiconductor P - semiconductor N utilizada por los diodos normales.
Así se dice que el diodo Schottky es un dispositivo semiconductor "portador mayoritario". Esto significa que, si el cuerpo semiconductor está dopado con impurezas tipo N, solamente los portadores tipo N (electrones móviles) desempeñarán un papel significativo en la operación del diodo y no se realizará la recombinación aleatoria y lenta de portadores tipo N y P que tiene lugar en los diodos rectificadores normales, con lo que la operación del dispositivo será mucho más rápida.
Características
La alta velocidad de conmutación permite rectificar señales de muy altas frecuencias y eliminar excesos de corriente en circuitos de alta intensidad.
A diferencia de los diodos convencionales de silicio, que tienen una tensión umbral —valor de la tensión en directa a partir de la cual el diodo conduce— de 0,7 V, los diodos Schottky tienen una tensión umbral de aproximadamente 0,2 V a 0,4 V empleándose, por ejemplo, como protección de descarga de células solares con baterías de plomo ácido.
La limitación más evidente del diodo de Schottky es la dificultad de conseguir resistencias inversas relativamente elevadas cuando se trabaja con altos voltajes inversos pero el diodo Schottky encuentra una gran variedad de aplicaciones en circuitos de alta velocidad para computadoras donde se necesiten grandes velocidades de conmutación y mediante su poca caída de voltaje en directo permite poco gasto de energía, otra utilización del diodo Schottky es en variadores de alta gama para que la corriente que vuelve desde el motor al variador no pase por el transistor del freno y este no pierda sus facultades.
El diodo Schottky se emplea en varios circuitos integrados de logica TTL. Por ejemplo los tipos ALS y AS permiten que los tiempos de conmutación entre los transistores sean mucho menores puesto que son más superficiales y de menor tamaño por lo que se da una mejora en la relación velocidad/potencia. El tipo ALS permite mayor potencia y menor velocidad que la LS, mientras que las AL presentan el doble de velocidad que las Schottky TTL con la misma potencia.
Diodo Shockley
Un diodo Shockley es un dispositivo de dos terminales que tiene dos estados estables: OFF o de alta impedancia y ON o baja impedancia. No se debe confundir con el diodo de barrera Schottky.
Está formado por cuatro capas de semiconductor tipo n y p, dispuestas alternadamente. Es un tipo de tiristor.
La característica V-I se muestra en la figura. La región I es la región de alta impedancia (OFF) y la III, la región de baja impedancia. Para pasar del estado OFF al ON, se aumenta la tensión en el diodo hasta alcanzar Vs, tensión de conmutación. La impedancia del diodo desciende bruscamente, haciendo que la corriente que lo atraviese se incremente y disminuya la tensión, hasta alcanzar un nuevo equilibrio en la región III (Punto B). Para volver al estado OFF, se disminuye la corriente hasta Ih, corriente de mantenimiento. Ahora el diodo aumenta su impedancia, reduciendo, todavía más la corriente, mientras aumenta la tensión en sus terminales, cruzando la región II, hasta que alcanza el nuevo equilibrio en la región I (Punto A).
Vrb es la tensión inversa de avalancha.
Este dispositivo fue desarrollado por W. Shockley tras abandonar los Laboratorios Bell y fundar Shockley Semiconductor. Fueron fabricados por Clevite-Shockley.
Cesar Iscala
C.I. 19236732
EES Seccion 1
No hay comentarios:
Publicar un comentario